
Paper CC07

Seven sharp surgery tips for Clinical Programmers

Rohit Banga, BIOP AG, Basel, Switzerland
David Garbutt, BIOP AG, Basel, Switzerland

ABSTRACT
Clinical programmers face a variety of challenging tasks daily. For many of these tasks

we know that there are numerous ways to achieve desired results using SAS. This paper
highlights some of the useful techniques that we have learned while working with SAS
and illustrates each snippet with real examples and code. We aim to make a collection use-
ful to beginners and experts and hope everyone will learn something useful or at the very
least be reminded of a technique they have forgotten.

The sharp tips we will reveal include using formats to replace left joins, using hash ob-
jects to perform table lookups and joins, displaying dates differently with Picture Formats,
an unexpected behavior when using a merge statement, a simpler to set up and less error
prone DO OVER loop, a FCMP Procedure example and importing XML files using SAS
Unicode server. Of course all the new programming techniques will produce errors in the
SAS log so we will also show an innovative way to facilitate log checking.

INTRODUCTION
This paper describes some useful SAS® Techniques for intermediate and advanced SAS users.
We have presented some real life scenarios along with SAS code to illustrate our point.

USE FORMATS INSTEAD OF JOINS
The validation checks for some complex studies can easily be more than 400 and many checks
require left joins with other datasets . Instead of making left joins to perform table lookups we
use formats. This technique is routinely employed by us in programming validation checks for
Data Management studies.

Imagine a scenario where we need to check whether Adverse Event Start date is before Study
Completion Date or not. In essence we need to check whether !"#$!"#%&'&(>=)*+$,!%&&-&(for
any particular patients.

We will first make dummy !"# &)*+ datasets -
...(/!&!(012(34&5(6!%&(7-"!&*"8&(/!&"(9
'!&!()*+(9
((((:8+;&(<;=>")&(?(6!%&7@7(?A$9
((/!&!648"%9
<BCDE(FEGHIJFEF
<BCDJ(JE1H@JFEF
<BCDK(ELIMNJFEF
<BCDL(JJ/O0JFEF
(9(
(-;89

(...(/!&!(HON(34&5(H'#"-%"(O#"8&(/!&"(9

'!&!('!-9

PhUSE 2011

1

((:8+;&(<;=>")&(?(N4%4&(/M</7(?A$9
(('!&!648"%9
<BCDE(E(FEPOCJFFA(
<BCDE(J(JEGHIJFEF(
<BCDE(K(EKIMNJFFA(
<BCDJ(E(FEGHIJFFA(
<BCDJ(J(JJ1H@JFEF(
<BCDJ(K(ELIMNJFFA(
9(
-;89

The traditional method would involve making a Left join / Merge between HON & 012 dataset
to get the Last Treatment date for each subject. However, we can also use formats to perform
this lookup.

To achieve that we will first make a Dataset with three columns – P*&8!*", <&!-& & 6!=",.
‘P*&8!*"’ is equal to the name of format which would be ‘6!%&7@7’. The column <&!-& is the
coded Value which is equal to)*+$%;=>")&(and column 6!=", is the Coded Text which is equal
to)*+$,!%&7@7.

This format dataset can be read by PROC FORMAT and result in a Format ?6!%&7@7.
...(1!Q"(:8+;&('!&!%"&(RS-(PS-*!&%(9

/!&!(RS-*!&TU""+(V(%&!-&("8'(,!=",(R*&8!*"W9
((((<"&(0129
((((6"8X&5(%&!-&("8'(,!=",(?JF$9
((((:R(DID("Y(E(&5"8('S9
((((((<&!-&(V(ZM7[O@Z9
((((((O8'(V(ZM7[O@Z9
((((((6!=",(V(ZZ9
((((((P*&8!*"(V(Z?6!%&7@7Z9(
((((((S;&+;&9
(((("8'9
((((<&!-&(V(<;=>")&9
((((O8'(V(<;=>")&9
((((6!=",(V(6!%&7@79
((((P*&8!*"(V(Z?6!%&7@7Z9
((((:R(IS&(*4%%48XT6!=",W(&5"8
((((((((S;&+;&9
-;89

...(M;&+;&(&5"(RS-*!&(9

+-S)(RS-*!&()8&,48VRS-*!&9
-;89

+-S)(RS-*!&()8&,S;&(V()5QDR*&9
-;89

Now this format can be used multiple times in a dataset to perform table lookup.

...(B%"(&5"(RS-*!&&"'(#!,;"(48%&"!'(SR(GS489
'!&!(S;&+;&9
(<"&(/H@9
(6!%&D7-"!&*"8&D/!&"(V(2;&T%;=>")&\?6!%&7@7$W9
(:R(:8+;&T/M</7\]]/!&"A$W(^7(48+;&T2;&T%;=>")&\?6!%&7@7$W\]]/!&"A$W9
-;89

UNEXPECTED BEHAVIOR OF MERGE STATEMENT
Consider this unexpected behavior of after merging two datasets –
Imagine we have a Lab Dataset with one record per patient per visit per lab parameter. We have

PhUSE 2011

2

a column with Visit Numbers and another column for Visit Names.
'!&!(6!=9
(((((:8+;&(<;=>")&(?(N4%4&IS((N4%4&I!*"(?EF$(6!=2!-!*(?9
'!&!,48"%9
<BCDE(E(M,'N4%4&E([^C
<BCDE(E(M,'N4%4&E([07
<BCDE(E(M,'N4%4&E(^6B0
<BCDE(E(M,'N4%4&E(_C0
<BCDE(J(M,'N4%4&J([^C
<BCDE(J(M,'N4%4&J([07
<BCDE(J(M,'N4%4&J(_C0
<BCDE(J(M,'N4%4&J(^6B0
<BCDE(K(M,'N4%4&K([^C
<BCDE(K(M,'N4%4&K([07
9
-;89

We have a dataset #4% where we have again have one record per patient per visit. This dataset
has a Visit Number column and Visit Name column.

data vis;
 input Subject $ VisitNo VisitName $10.;
 datalines;
SUB_1 1 NewVisit1
SUB_1 2 NewVisit2
SUB_1 3 NewVisit3
SUB_2 1 NewVisit1
SUB_2 2 NewVisit2
SUB_2 3 NewVisit3
;
run;

Our Task is that we want to put New VisitNames from the N:< dataset in the 6HC Dataset. For
this purpose we normally merge the two datasets keeping the N:< dataset on the right side and
we imagine that since the VisitName column is in the N:< dataset on the right side, it will over
write the Visit Names in the 6HC Dataset in the left hand side and we will achieve our purpose.

'!&!(-"%;,&9
((((1"-X"(6!=T48(V!W((N4%(T48V=W9
((((C`(<;=>")&(N4%4&IS9
((((:R(!9
((-;89

Let’s look at the result of the above Merge in a graphic way–

PhUSE 2011

3

Expected Result – Actual Result

If you look closely then you will find that the expected result is not same as the actual result.
In reality the Visit Name column has the first value correct but the rest of the values are not cor-
rect.

This happens because during a match-merge SAS first merges the first BY- groups in the two
datasets and #4%$#4%4&8!*" successfully overwrites ,!=$#4%4&8!*" in the first observation. At
the end of first iteration of data step SAS reinitializes variables to missing. SAS then determines
if there are observations remaining for the current BY group to merge. No observations are left
for the current BY – group in the VIS dataset and therefore in the next observation
,!=$#4%4&8!*" does not overwrite ,!=$#4%4&8!*" and the original value of ,!=$#4%4&8!*" is
preserved.

To overcome this behaviour we should drop the variable ,!=$#4%4&8!*" so that when the
merge occurs it is only #4%$#4%4&8!*" which makes the #4%4&8!*" column.

Some useful options by which we can detect the overwriting of columns is
M+&4S8%(*%X,"#",(V(4$((

This option will result in a NOTE in the SAS Log when a variable from one dataset overwrites
another variable while merging.

INNOVATIVE WAY OF CHECKING LOG
The purpose of this technique is more to demonstrate how to add custom functionality to SAS
rather than checking the log itself.

It is easy to add buttons on the SAS Toolbar and enhance the functionality of currently avail-
able tools in SAS.

PhUSE 2011

4

Click on Tools – Customize and click on ‘Customize’ tab of the ‘Customize Tools’ dialogue box
that opens.

 Suppose our SAS program to check logs is stored in a/bc05")Q6SXc05")Q6SX$%!%d. Write the
Statement –

%;=(Ze48),;'"(f/bc05")Q6SXc05")Q6SX$%!%f9Z

 to include the program.
Do not forget to assign an Icon by clicking the Change Icon button.
Otherwise the new button will not be visible on the toolbar.

After we assign the button and click OK, a new button is visible on the SAS toolbar. This but-
ton can be pushed to run the program 05")Q6SX$%!%. There are numerous ways to write a code
to check the log. One of the ways is displayed here –

R4,"8!*"()!&()!&!,SX(Z3S-Q$)5Q,SX$)5Q,SX$,SXZ(9
'*(Z,SX9R4,"()!&Z(9(.(3-4&"(,SX(&S()!&!,SX(*"*="-(9

'!&!(6SX(T'-S+V"--W9
((((48R4,"()!&("8'V"8'(&-;8)S#"-9
((((48+;&(,48"(?EgEFFF9
((((-"&!48(O--9
((((4R(%;=%&-8T%&-4+T,48"W\E\hW(V(ZO@@M@Z(S-(%;=%&-8T%&-4+T,48"W\E\iW(V(Z_H@I:I^Z(
((((&5"8('S9
((((((((648"I;*="-V(DID9
(((((((("--VE9
((((((((S;&+;&(6SX9
(((((((()!,,(%`*+;&TZS=%Z\EW9
(((("8'9
((((4R("8'(!8'("--(V(E(&5"8('S9
((((((348'S3(%&!&;%(-S3%VEh()S,;*8%VLF()S,S-V=,;"
((((((jh(fO--S-%(k(_!-848X%(3"-"(+-S';)"'(48(&5"(,SX$(f()S,S-V_54&"
((((((ji(f2-"%%(OI7O@(&S()S8&48;"$f()S,S-VC,!)Q9
(((((('4%+,!`(%&!&;%(9
(((("8'9
-;89

/!&!(D8;,,D9
((((4R(F(&5"8(%"&(6SX(8S=%(V(8S=%9
((((4R(8S=%(V(F(&5"8('S9
(((((((((348'S3(%&!&;%(-S3%VEh()S,;*8%VLF()S,S-V)`!8
(((((((((jh(fIS(O--S-%(S-(_!-848X%(3"-"(+-S';)"'(48(&5"(,SX$(f()S,S-VC,!)Q
(((((((((ji(f2-"%%(OI7O@(&S()S8&48;"$f()S,S-VC,!)Q9
((((((((('4%+,!`(%&!&;%(9
(((((("8'9
%&S+9
-;89

R4,"8!*"()!&(9(.gg(R-""()!&!,SX(*"*="-(9
'*(Z'",(3S-Q$)5Q,SX$)5Q,SX$,SXZ(9(.gg(8S3('","&"(4&(9

USING PICTURE FORMATS TO DISPLAY DATES
SAS provides numerous ways to display dates. However many times we want to display dates
in a special format which makes it easy for an investigator to read. Picture formats can help to
display dates in almost any format you desire.

To create this picture we need to issue special characters called ‘Directives’ in the PICTURE
statement. Some of the permitted directives are defined in the table. The examples are shown

PhUSE 2011

5

for the date − 1st March 2009 and the value in
brackets in the result column tell us what the
directive will display.

For the full list of directives please see the
SAS documentation linked in the References
section.

Defining a picture format is similar to de-
fining a normal format using a value state-
ment. In our example, we will just define the
‘M&5"-’ value and write the directives. We
also need to write the '!&!&`+" which is
equal to '!&" in our case.

Suppose we want to display 1st March, 2009
as 01/03/2009. We will choose our directive
as
‘eF'leF*lemd which breaks down as:
eF' # (to display date with a leading zero), followed by ald then
eF* # (to display numeric month with a leading zero), followed by ald and then finally
em # (to display year in full 4 letter format).
Run the code below and check the log for different types of date formats.

2@M0(PM@1H79
2:07B@O(<//11mm(M7[O@(V(ZeF'leF*lemZ((((((((((T/H7H7m2OV/H7OW9
2:07B@O(<//1MImm(M7[O@(V(ZeF=e'em((Z((((((((T/H7H7m2OV/H7OW9
2:07B@O(<_OOU(M7[O@(V(ZeH\(eC(e'\(em(((((((((ZT/H7H7m2OV/H7O(6HI^BH^OVOI^6:<[W9
2:07B@O(<26B<(M7[O@(V(Z1!`="(gn(eF'oeCoeF`(((ZT/H7H7m2OV/H7O(6HI^BH^OVOI^6:<[W9
@BI9

/!&!(DI;,,D9
((((/!&"(V('!&"TW(9
((((+;&(Z/!&"(34&5(<,!%5"%((((((((eF'leF*lem((((bZ(/!&"(%''**``$(9
((((+;&(Z/!&"(34&5(2S48&%(((((((((eF=e'em(((((bZ(/!&"(%''*S8``$9
((((+;&(Z/!&"(34&5(_""Q'!`(I!*"(((eH\(eC(e'\(em(bZ(/!&"(%3""Q$(((9
((((+;&(Z/!&"(34&5(2,;%(((((((((((eF'oeCoeF`((((bZ(/!&"(%+,;%$(((9
-;89

USE HASH OBJECTS FOR TABLE LOOKUP
The hash object is an addition to the types of tools available to the SAS programmer. Hash ob-
jects are also known as ’content addressable arrays’ and this is a useful way to think of them.
Think of the task of counting the distinct values of a variable, ,!=+!-*. In a data step we might
use an array1 to keep the distinct values in and another array to make a count, write some care-
ful counting logic only adding a new value if not found. With a content addressable array we

PhUSE 2011

6

1 If we were programming this – normally – we should use proc SQL or another proc for this kind of task
because they are faster and easier to use (and read).

Time period code result

Year em(JFFA(((((((

e`(A(((((

eF`(FA

Month e* K((((((((((((

eF*(FK

Month Name eC(1!-)5(((

e=((1!-

Day e'(E(((((((((((((

eF' FE

Day of Week eH(<;8'!`(

e!(<;8

e3(E

Hour eF[01
Minute eF1(01
Second eF<(01

merely have a statement like:
/4%#!,;"p,!=+!-*q(oo(E(9

Here we add one to the element of the array ('4%#!,;") with the value of ,!=+!-*. After we
have added all the values we print the array index and counts. This is conceptually much sim-
pler and with no tricky bits of programming to get right.2

HASH ARRAY REPLACING FORMAT LOOK-UP
The SAS hash array can be used as a look up technique. We will use a hash array to re-

program the format example we have already used.
...(*"-X"(;%48X(!(5!%5(&!=,"(48%&"!'(SR(!(RS-*!&(...(9
!"#"(5S;&+;&(9
(((
((((%"&('!-(9
((((4R(D8D(V($(&5"8('S9
((((-)(V(%(9
(((((,"8X&5(<;=>")&(?(&((6!%&7@7(?'9
((((.gg(((((((((((((((((((('"),!-"((&5"(5!%5(S=>")&$(M;-%(4%()!,,"'("8'&-&(
((((.gg((((((((((((((((((((,S!'(&5"(5!%5(S=>(=`(%+")4R`48X(&5"('!&!%"&(8!*"(9
((((/O06H@O([H<[("8'&-&T'!&!%"&b(f3S-Q$)*+f\[H<[Or2b$(W9
((((-)(o("8'&-&$/OP:IOUOm(TZ<BCGO07ZW9
((((-)(o("8'&-&$/OP:IO/H7HTZ<BCGO07Z\(Z6!%&7@7ZW9
((((-)(o("8'&-&$/OP:IO/MIOTW9

(((((((((((("8'(9
((((
(((((((((.ggg(,S!'(&5"(#!,;"(SR(,!%&&-&(48(R-S*(&5"(5!%5(&5!&(4%(%&S-"'(34&5(
((((((((((();--"8&(#!,;"(SR(%;=>")&9
((((-)(V("8'&-&$R48'TW(9
(((
(.gg(3"(5!#"(S8"(-")S-'(+"-(#4%4&(g(8S3(%",")&(&5"(#4%4&%(!R&"-(,!%&('S%"(9
(:R(48+;&T/M</7\]]/!&"A$W(^7(48+;&T6!%&7@7\]]/!&"A$W(!8'(-)(V(%(9
(
(((('-S+(-)(9
)*+9

The program sets the main dataset ('!-) then the hash object called "8'&-& is declared and
loaded by specifying the '!&!%"&: keyword. The next three statements define the key (%;=>")&)
and the data to be kept (6!%&7@7). Here we are keeping only one variable from _S-Q$0*+ but it
could be more than one (unlike the format solution). Then we call '"R48"'S8" to indicate the
hash object is ready. This initialization and loading of the hash object should only be done once
and therefore this whole section is enclosed in an if _n_ = 1 test. The hash messages
('"R48"Q"`\('"R48"'!&!\('"R48"'S8") all deliver a return code and these values should be col-
lected and tested for errors. Here this code is omitted but the downloadable file contains more
checking code to illustrate.

This method uses fewer lines of code than the format method and the lines are all integrated
in one data step. According to SAS Institute the hash method also runs faster. The hash method
can use multiple keys and return multiple variables which the format technique cannot do.

So should you always use the hash method? The short answer is − it depends. The hash object
cannot be stored so if you have many programs using your format mapping you might prefer a
format. Also if you are doing a range conversion a hash object cannot help you, nor can it help if
you want to create a format to use in PROC SQL code.

PhUSE 2011

7

2 Coding needed to set the dimensions of the array in the do loop using '4*T!--!`8!*"W but it is so easy
to leave that for later, or think the array will always be the same dimension. Not until later when an !--!`(
48'"s"'(S;&(SR(=S;8'% message pops up on the day of testing will the pain be felt.

Hashes can be loaded directly from a dataset as shown above so in that sense they could be
shared.
HASH OBJECTS TO REPLACE SURPRISING MERGE
The usage of the hash object is very similar to the first case we looked at. Instructively similar.

...(*"-X"(;%48X(!(5!%5(&!=,"(48%&"!'(SR(!('!&!(%&"+(*S'",(&5"('!&!%&"+("s!)&,`(...(9
'!&!(5@"%;,&(9
(((%"&(,!=(9
(((4R(D8D(V(E(&5"8('S9
((((((-)(V(F(9
((((((,"8X&5(<;=>")&(?(t((#4%4&8!*"(?EF9
(((((((((((.gg('"),!-"((&5"(5!%5(S=>")&$(M;-%(4%()!,,"'("8'&-&(
(((((((((((.gg(,S!'(&5"(5!%5(S=>(=`(%+")4R`48X(&5"('!&!%"&(8!*"(9
(((((((((((/O06H@O([H<[(#4%8!*T'!&!%"&b(f3S-Q$#4%f\[H<[Or2bEuW9
(((((((((((-)(o(#4%8!*$/OP:IOUOm(TZ<BCGO07Z\ZN:<:7IMZW9
(((((((((((-)(o(#4%8!*$/OP:IO/H7HTZ<BCGO07Z\(ZN:<:7IMZ\(ZN:<:7IH1OZW9
(((((((((((-)(o(#4%8!*$/OP:IO/MIOTW9
(((((((((((4R(-)(&5"8
(((((((((((+;&(ZO@@Z(ZM@b(+5;%"('"*Sb()!88S&(484&4!,4%"(5!%5Z(D8DV(-)V(%;=>")&V(
((((((((((((((#4%4&8SV(#4%4&8!*"V9
(((((((((((.gg(!''48X(&5"(8"s&(%&!&"*"8&('S"%(8S&548X\("#"-\(=;&(4&(+-"#"8&%(!8(
(((((((((((.gg(Z#4%4&8!*"(4%(;8484&4!,4%"'Z(*"%%!X"9
(((((((4R(F(&5"8(#4%4&8!*"(V(Z(Z(9
(((("8'(9
(((((((((.ggg(,S!'(&5"(#!,;"(SR(#4%4&(8!*"(48(&5"(R-S*(&5"(5!%5(&5!&(4%(%&S-"'(34&5(
(((((((((.ggg();--"8&(#!,;"(SR(%;=>")&(!8'(#4%4&9
((((-)(V(#4%8!*$R48'TW(9
(((('-S+(-)(9
((-;89

And the result is as expected − not with a mixture of sources for the visit name column. The
above statement reveals an interesting aspect of SAS programming because surely we should
guarantee the same visit names are used for all subjects? Our program above does not do that
because the subject and visit number are used as keys. We can easily change the above program
to use just the #4%4&8;*(as a key because the program makes no assumptions about the order in
the dataset used to load the data.

'!&!(5@"%;,&J(9
(((%"&(,!=(9
(((4R(D8D(V(E(&5"8('S9
((((((-)(V(F(9
((((((,"8X&5((((((((#4%4&8S(t((#4%4&8!*"(?EF9
(((((((((((.gg('"),!-"((&5"(5!%5(S=>")&$(M;-%(4%()!,,"'("8'&-&(
(((((((((((.gg(,S!'(&5"(5!%5(S=>(=`(%+")4R`48X(&5"('!&!%"&(8!*"(9
(((((((((((/O06H@O([H<[(#4%8!*T'!&!%"&b(f3S-Q$#4%f\[H<[Or2bEuW9
(((((((((((-)(o(#4%8!*$/OP:IOUOm(TZN:<:7IMZW9
(((((((((((-)(o(#4%8!*$/OP:IO/H7HTZN:<:7IMZ\(ZN:<:7IH1OZW9
(((((((((((-)(o(#4%8!*$/OP:IO/MIOTW9
(((((((((((4R(-)(&5"8
(((((((((((+;&(ZO@@Z(ZM@b()!88S&(484&4!,4%"(5!%5Z(D8DV(-)V(%;=>")&V(#4%4&8SV(#4%4&8!*"V9
(((((((((((.gg(!''48X(&5"(8"s&(%&!&"*"8&('S"%(8S&548X\("#"-\(=;&(4&(+-"#"8&%(!8(
(((((((((((.gg(Z#4%4&8!*"(4%(;8484&4!,4%"'Z(*"%%!X"9
(((((((4R(F(&5"8(#4%4&8!*"(V(Z(Z(9
(((("8'(9
(((((((((((
(((((((((.ggg(,S!'(&5"(#!,;"(SR(#4%4&(8!*"(48(&5"(R-S*(&5"(5!%5(&5!&(4%(%&S-"'(34&5(
(((((((((.ggg();--"8&(#!,;"(SR((#4%4&(9
((((-)(V(#4%8!*$R48'TW(9
(((('-S+(-)(9
((-;89

Why does not the original program do this? The reason is that SAS would need to re-sort the

PhUSE 2011

8

,!= dataset by visit number. This of course could take a long time.3

The '"),!-"(5!%5(statement can also take a(';+,4)!&"b(a"d argument tag the effect of this is
to cause an error if any key-value pairs are duplicated. The default action is to take the first oc-
currence and ignore any duplicates. Adding this to our program does not give the checking
needed in this case (to ensure the same visit number always has the same label) unless the data
for the hash are prepared using a PROC SQL query with a '4%&48)& keyword.

PROC FCMP TO REPLACE MACROS
Although it has been possible to call functions compiled with other languages in SAS for some
time PROC FCMP (Function CoMPile) offers something new because it compiles functions from
data step code. Well, there are a few limitations, but they are few.

SAS macro language was designed so programs could be parameterized and this is accom-
plished by modifying the text that the SAS parser will see. If you code a transformation as a SAS
macro the code will be created at each call and then still compiled. This is not how a normal
function works. A function is compiled and the binary code is called each time the function is
invoked in a program. It reduces the amount of code for compilation. This is the kind of function
that PROC FCMP can create.

Our example is a function that recodes character variables that are to be output into a file that
will be processed by LaTeX into a PDF. Why this is a good idea could be the subject of a whole
paper and a televised debate, but suffice it to say the output quality generated by LaTeX is sec-
ond to none, it is very easy to generate PDF links that work, and straight forward to create
documents with indexes, bookmarks and full cross-referencing4 .

The task this function does is to substitute characters that are special to LaTeX with their
equivalent string that will render correctly in print.

This kind of substitution is better done using regular expressions or one of the family of
&-!8%,!&" functions, but in this case they cannot be used. The reason is that that the substituted
strings contain characters to be substituted.

?(!(c?
c(!(cc

Therefore it is easiest to pass once through the string to be encoded substituting as many char-
acters as needed. Here is an example of the original code, clever because it solves the sequence

PhUSE 2011

9

3 Another solution would be to index the lab dataset with two indexes and avoid the double sorting

4 For example if you were documenting SAS datasets or XPT files you might appreciate an index show-
ing every page each variable and dataset are mentioned.

problem by getting it right but it is not maintainable, especially when you know this code was
repeated 20+ times in the program5.

!"#"(D8;,,D9(
48R4,"(v'!&!%"&D,4%&$&s&f(,-"),VEFFFF('%'(',*VZwZ(
(((((((("8'V,!%&-S3(,"8X&5V,48","8()S,;*8V);--)S,9(
48+;&('%8!*"(?('"%)-4+(b(?KJ$(x9(y

)!,,(%`*+;&(TZ'"%)-4+Z(ww(,"R&(TD8DW\
((&-!83-'TT&-!83-'(TT&-!83-'(TT&-!83-'(TT&-!83-'(TT&-!83-'(TT&-!83-'(
((((TT&-!83-'(TT&-!83-'(TT&-!83-'(TT&-!83-'(
(((((T&-4*(T'"%)-4+W\ZkZ\ZckZWW\
((((((((((ZzZ\ZczZWW\(Z{Z\Zc{ZWW\(ZDZ\ZcDz{ZWW\(ZeZ\ZceZWW\
(((((((((Z|Z\Zc|z{ZWW\(Z?Z\Zc?ZWW\(Z}Z\Z?}?ZWW\(ZnZ\Z?n?ZWW\
(((((((((Z~Z\Zc~z{ZWW\(ZjZ\ZcjZWW9(

We will not discuss PROC FCMP in detail but concentrate on what it can do for you. What does
a barebones function definition look like?

,)-.(/.0,(S;&,4=V(%!%;%"-$1`<;=%$'!#"R;8)(9(

R;8)&4S8(6!&"s"8)S'"T#!-(?(W(?($%129(
(((l.()S'"(XS"%(5"-".l
"8'%;=(9(

Y;4&9(

-,#3-+4(0126:C(V(%!%;%"-$1`%;=%9(
!"#$%&#'()*#+*'+'#"!(
$$$

Only five lines to be added to your code. The call of the +-S) and the R;8)&4S8 and "8'%;=
statements that enclose the function. Identifiers in the parentheses are the parameter names to
be used inside the function. Arrays can also be passed. The -"&;-8 statement will define what
value will be delivered by the function.

To call it write ,!&"s"8)S'"T%&-48XW.6 How does the code look? Just like it would in a data
step.

R;8)&4S8(6!&"s"8)S'"T#!-(?(W(?($%129(
,"8X&5(-"%;,&(?($%12()(&!=(%+(?($(9(
-"%;,&(V(ZZ(9()VZZ(9(%+(V(Z(Z(9(&!=(V(=`&"T5W9(
'S(4V($(&S(,"8X&5T#!-W(9(
(()(V(%;=%&-T#!-\4\$W(9(
((%",")&(T)W9(
(((((35"8(TZ(ZW(-"%;,&(V()!&&T-"%;,&\(7HCW(9(
(((((35"8(TZcZW(-"%;,&(V()!&&T-"%;,&\(Z?c=!)Q%,!%5?ZW9(
(((((35"8(TZzZW(-"%;,&(V()!&&T-"%;,&\ZczZW9(
(((((35"8(TZ{ZW(-"%;,&(V()!&&T-"%;,&\(Zc{ZW9(
(((((35"8(TZeZW(-"%;,&(V()!&&T-"%;,&\ZceZ(W9(
(((((35"8(TZkZW(-"%;,&(V()!&&T-"%;,&\ZckZ(W9(
(((((35"8(TZ|ZW(-"%;,&(V()!&&T-"%;,&\Zc|z{ZW9(
(((((35"8(TZ?ZW(-"%;,&(V()!&&T-"%;,&\(Zc?ZW9(
(((((35"8(TZ~ZW(-"%;,&(V()!&&T-"%;,&\(Zc~z{ZW9(

PhUSE 2011

10

5 I am not saying the original program was not an achievement. The author was aware of this issue be-
cause a 8 year old comment said /* turn this code into a function later */

6 Notice there are some complications with arguments that are long character strings, also put state-
ments should not be used.

(((((35"8(TZDZW(-"%;,&(V()!&&T-"%;,&\(ZcDz{ZW9(
(((((35"8(TZjZW(-"%;,&(V()!&&T-"%;,&\(ZcjZW9(
(((((35"8(TZ}ZW(-"%;,&(V()!&&T-"%;,&\(Z?}?ZW9(
(((((35"8(TZnZW(-"%;,&(V()!&&T-"%;,&\(Z?n?ZW9(
(((((S&5"-34%"(-"%;,&(V()!&&T-"%;,&\()(W9(
((("8'9(
"8'9(
-"%;,&(V(&-!8%,!&"T)S*+-"%%T-"%;,&W\(%+\&!=W(9(
-"&;-8T-"%;,&W9(
"8'%;=(9

Is it effective? Judge for yourself by comparing the two programs:

l.(+;&(IH1O(k(6!=",(k(7`+"(k(6"8X&5(k(RS-*!&(T8!*"(!8'(,48QW(.l
)S,E(V(,!&"s"8)S'"T;+)!%"T#!-8!*"W(W(9
)S,J(V(,!&"s"8)S'"T#!-,!=",W9
4R(&`+"(V($(&5"8(
(((((()S,K(V(Z(k(I;*(k(Z(9(
(((",%"(
(((((()S,K(V(Z(k(05!-(k(Z(9(
)S,L(V(,"R&T+;&T,"8X&5\($%6%WW(9(
)S,h(V(,!&"s"8)S'"T/-)0"#+"07W(9(

+;&()S,E(Zk(Z()S,J()S,K()S,L(Z(k(Z(Zc5`+"--"RpZ(
(((()S,h(ZqzZ()S,h(Z{Z(9(
+;&(Z{(ccZ9(
+;&Z(c5,48"Z(9

Here is a program extract before and after we changed it to call ,!&"s"8)S'". Over 220 lines of
code that recoded 5 variables and +;& them to a file were condensed to 5 lines. Simpler, more
readable, easier to maintain and compiled once.

Functions are not supported in +;& statements so we cannot reduce it to one line, but using the

PhUSE 2011

11

new cat family of functions we can make it two! The)!& functions make a common pattern of
SAS programming simpler: concatenating strings. Because SAS Character variables are fixed
length strings many constructions you might expect to work do not. Using cat functions can
save you from nested &-4*T,"R&T function calls thus saving, with one call, your sanity − and
your fingers. Here is a simple example of what the)!&s can do.

!"#"(,"8X&589
(((48+;&(%&-48X(?)5!-t$9
(((S-4X48!,(V(Z.Z(ww(%&-48X(ww(Z.Z9
(((%&-4++"'(V(Z.Z(ww(%&-4+T%&-48XW(ww(Z.Z9
((()!&<"'(V()!&4TZ.Z\%&-48X\Z.ZW(9
((()!&7"'(V()!&#TZ.Z\%&-48X\Z.ZW(9
((()!&%"+"'V()!&8TZ(Z\Z.Z\%&-48X\Z.ZW(9
((()!&%"+R8V()!&8TZ(Z\Z.Z\;+)!%"T%&-48XW\Z.ZW(9
'!&!,48"%9
!=)'
((!=)'
((((!=)'
!=)'"RX5
(s(`(�
9

,)-.(,)3+#('!&!V,"8X&589
-;89

The results are like this, with the input on left (having various combinations of leading and
trailing blanks) and results of)S8)!&"8!&"\(%&-4+\()!&%\()!&&\(and)!&s going from left to
right.

(75"(<H<(<`%&"*((((((((((((((((((((((((((((((((E

M((((
C((gggggggg0H7rgggggggggg((((
%(:8+;&(((((((ww((((((%&-4+(((((()!&<((((((()!&7(((((((<+!)"(%"+((((B++"-)!%"
E(!=)'(((((.!=)'((((.(.!=)'.(((((.!=)'.(((((.!=)'.(((((.(!=)'(.(((((.(HC0/(.
J(((!=)'(((.((!=)'((.(.!=)'.(((((.!=)'.(((((.((!=)'.(((.(!=)'(.(((((.(HC0/(.
K(((((!=)'(.((((!=)'.(.!=)'.(((((.!=)'.(((((.((((!=)'.(.(!=)'(.(((((.(HC0/(.
L(!=)'"RX5(.!=)'"RX5.(.!=)'"RX5.(.!=)'"RX5.(.!=)'"RX5.(.(!=)'"RX5(.(.(HC0/OP^[(.
h((s(`(�(((.(s(`(�((.(.s(`(�.((((.s(`(�.((((.(s(`(�.(((.(s(`(�(.((((.(r(m(Ä(.

The way to remember which is which is that 0!&(< takes off leading and trailing spaces, 0!&(7(only
trims, and 0!&(r(adds the X factor between each string. X, being, obviously what separates our strings
from the ordinary cats. The last column is to remind us that)!& can be passed function calls.

How does this get us to two lines? We can just put the function calls used to create each column into
arguments of one)!&% call. We push this idea to the max by also using the 4R)(function to embed a con-
ditional as well. A conditional, note, that easily handles missing values if they occur. The k character used
is the separator for table cells in a LaTeX table, cc is the end of the row, and c5,48" draws a horizontal
rule under this table row.

754%,48"(V()!&%T
((((,!&"s"8)S'"T(;+)!%"T#!-8!*"W(W(9
((((ZkZ9
((((,!&"s"8)S'"T#!-,!=",W9
((((4R)T(&`+"(\(ZI;*(TZww%&-4+T+;&T,"8X&5\($%6%WWwwZWZ\(
(((((((((Z05!-(TZ(ww(%&-4+T+;&T,"8X&5\($%6%WWww\
((((((((Z]]]IS(7`+"('"R48"'ÅZW(9

PhUSE 2011

12

((((Z(k(c5`+"--"RTZ:9(,!&"s"8)S'"T/-)0"#+"07W9
((((Z{zZ9:,!&"s"8)S'"TRS-*!&8!*"W9
((((Z{(cc(c5,48"Z((W9(
2;&(754%,48"(9

With this code (of two logical lines) we output a line in the LaTeX file like this7

HX"cD%(k(HX"(!&(%&;'`(%&!-&(k(I;*(TtW(k(c5`+"--"Rz!X"cD%&${z!X"cD%&${(cc(c5,48"

 Which, when turned into PDF by LaTeX has a table row that looks like:

The headers were done in a different part of the '!&!(D8;,,D$ The format name is coloured
because it is a clickable link to the page of the document where the format content is listed. (In
the LaTeX code we have created we do not need to know where that is. At the point where the
format is output we just add a c,!=",(to mark that location as one that will be referred to.

PROC FCMP is a powerful addition to SAS because it implements a real subprogram with local
variables for the first time, this makes it worth looking at if you are writing a large system with
SAS, e.g. A reporting system. For more information see the further reading section.

IMPORTING XML USING SAS UNICODE SERVER
The default coding for XML files is generally UTF-8 when reading XML with the SAS XML en-
gine you should make sure your SAS session is running with the options

g/C0<
gOI0M/:I^(B7Pgt

If you do not do this you may get strange characters in your datasets and worse you may get
nothing read at all and a message complaining your XML file is malformed. The above options
set the default encoding of the SAS session to Unicode. Other files with different encodings can
still be read from such a session but the encoding must be specified on the ,4=8!*" or R4,"8!*"
statements. There are also new functions for recoding in which are documented in the NLS
support manual. Note that these do not map characters in the same way that specifying an en-
coding does. So be aware and test carefully. And comprehensively.
UTF MADE SIMPLE(R)
UTF8 encoding takes 1 to 4 bytes per character and the first 128 ASCII characters are the same
and are no problem.

Problems do occur with character codes above 128. Wrongly encoded they can result in empty
spaces, or control or graphic characters in runs of 2-4. The issue is complicated by differences
between Windows code pages and ISO standards.

Some often used characters are allowed in Windows LATIN but not ISO LATIN1:
• curly quotes “LIKE THIS she said”
• Plus/minus, etc. ±, ≥, ≤, ≠, !
• Long dashes (em and en)

These characters get translated to codes above 256 in Unicode and may or may not appear
correctly in the SAS dataset.

PhUSE 2011

13

7 Here for clarity I show the table row as one line, however this not a Latex requirement. Extra spaces and
newlines are just discarded.

BONUS 1 - DO OVER LOOP
The do over loop is a deprecated feature8 that predates the normal do loop with the =`\(&S and
R-S* keywords. It is used with arrays and defines it own index variable (D4D) which is automati-
cally dropped. The syntax is simple:

'S(S#"-(}!--!`8!*"n(9
y
"8'9

BONUS 2 - USE PUTLOG FOR ERROR MESSAGES IN DATA STEPS OUTPUTTING TO FILES
Error messages are a vital part of any program that will be used more than once or by another
person. But writing to the log while writing to other files from a '!&!(D8;,,D(9(has always
been awkward. There is now a solution − use +;&,SX it will always send its output to the log
even if a file destination is in place.

CONCLUSION
There are many ways to accomplish your goals with SAS, it is always worth exploring new
ways because all the methods fit best in different situations.

ACKNOWLEDGMENTS
We thank our colleagues at BIOP for useful input and comments that sharpened these tips and

our programming. We thank our families for their continued support and forbearance.

RECOMMENDED READING
Hash objects

There are many papers about using hash objects and a good example is Why Hash? by Glen
Becker which clearly explains the benefits and limitations of the hash object. Downloadable
from the SCSUG site. http://www.scsug.org/SCSUGProceedings/2009/Glen_Becker.pdf.
Arrays and Do over.

See the paper by Jennifer Waller obtainable from
http://support.sas.com/resources/papers/proceedings10/158-2010.pdf
;)-.:/.0,

This procedure can really change the way SAS macro systems are written and the word is
spreading see http://support.sas.com/resources/papers/proceedings11/291-2011.pdf and
Charlie Huang’s blog post here:
http://www.sasanalysis.com/2011/08/macro-design-pattern-by-proc-fcmp.html
Picture statement

Details in the online manual here:
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a0

02473467.htm
Szilagyi and Binder, 2006, Watch out, a MERGE ahead -

http://www.lexjansen.com/phuse/2006/cs/cs02.pdf

PhUSE 2011

14

8 Removed from the documentation in version 8. See further reading for more information.

http://www.scsug.org/SCSUGProceedings/2009/Glen_Becker.pdf
http://www.scsug.org/SCSUGProceedings/2009/Glen_Becker.pdf
http://support.sas.com/resources/papers/proceedings10/158-2010.pdf
http://support.sas.com/resources/papers/proceedings10/158-2010.pdf
http://support.sas.com/resources/papers/proceedings11/291-2011.pdf
http://support.sas.com/resources/papers/proceedings11/291-2011.pdf
http://www.sasanalysis.com/2011/08/macro-design-pattern-by-proc-fcmp.html
http://www.sasanalysis.com/2011/08/macro-design-pattern-by-proc-fcmp.html
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473467.htm
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473467.htm
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473467.htm
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/viewer.htm#a002473467.htm
http://www.lexjansen.com/phuse/2006/cs/cs02.pdf
http://www.lexjansen.com/phuse/2006/cs/cs02.pdf

